dicarboxylate ($512 \mu \mathrm{~L}$). The mixture was stirred at $20^{\circ} \mathrm{C}$ for 5 min and evaporated, and the residue was chromatographed over silica gel, eluting with $\mathrm{EtOAc} / 5 \% \mathrm{Et}_{3} \mathrm{~N}$ to give 35 : $392 \mathrm{mg}, 80.2 \%$; mp $92-94{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 1625,1380,1280,1163,1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta$ $8.08(2 \mathrm{H}, \mathrm{d}), 7.45-7.60(5 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{b}), 3.96(1 \mathrm{H}, \mathrm{b}), 2.95(1$ $\mathrm{H}, \mathrm{m}), 2.23(3 \mathrm{H}, \mathrm{brs}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.97(1 \mathrm{H}, \mathrm{m}), 1.35(1 \mathrm{H}, \mathrm{m})$, the signals are broadened due to amide resonance; MS, m/e calcd for $\mathrm{C}_{20^{-}}$ $\mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 368.0956$, found 368.0945 .

Starting with the phenol $20(620 \mathrm{mg})$ through four steps, $\mathrm{Et}_{3} \mathrm{SiH}$, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{LiAlH}_{4}$, and finally cyclopropane ring closure, gives 35 (392 mg , 70.7%).

1,2,8,8a-Tetrahydro-7-methylcyclopropa[c]pyrrolo[3,2 -e]indol-4($\mathbf{5 H}$)-one (2). A solution of 35 ($73 \mathrm{mg}, 0.19 \mathrm{mM}$) in 1 M MeONa (1.91 $\mathrm{mL}, 10$ equiv) was stirred at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was quenched with 10% aqueous $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution (5 mL) and extracted with dichloromethane ($6 \times 5 \mathrm{~mL}$). The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was evaporated and the residue chromatographed over silica gel, eluting with THF/Et$\mathrm{OAc}(1: 1) / 5 \% \mathrm{Et}_{3} \mathrm{~N}$ to give $2(30 \mathrm{mg}, 75 \%)$ as an off-white foam: IR $\left(\mathrm{CHCl}_{3}\right) 3450,1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 9.00(1 \mathrm{H}$, brs), $6.70(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{brs}), 3.79(1 \mathrm{H}$, ddd, $\mathrm{J}=10,5,2 \mathrm{~Hz}$), $3.63(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{m}), 2.00(3$ $\mathrm{H}, \mathrm{s}), 1.86(1 \mathrm{H}, \mathrm{dd}, J=8,4 \mathrm{~Hz}), 1.20(1 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz})$; MS, m / e calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: 200.0949$, found 200.0960 . The above material was compared with an authentic sample supplied by Dr Warpehoski and Dr. Martin (The Upjohn Company) and was identical by TLC, NMR, and IR.

If the methoxide treatment of $\mathbf{3 5}$ is stopped after 15 min and the solution is worked up as above, the deacetylated product $\mathbf{3 6}$ is isolated: IR (CHCl_{3}) $3440,1620,1260,1140 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 360 \mathrm{MHz}$) $\delta 7.97(2 \mathrm{H}, \mathrm{d}), 7.5-7.36(5 \mathrm{H}, \mathrm{m}), 4.58(1 \mathrm{H}, \mathrm{brs}), 3.68(1 \mathrm{H}, \mathrm{m}), 3.63$ $(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 2.94(1 \mathrm{H}, \mathrm{m}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=$ $8,4 \mathrm{~Hz}), 1.22(1 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}) ; \mathrm{MS}, m / e$ calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: 340.0882 , found 340.0875 .

Reaction of the Cyclopropapyrroloindole 35 with Nucleophiles. To a solution of $35(10 \mathrm{mg})$ in THF ($200 \mu \mathrm{~L}$) was added p-chlorothiophenol
(7 mg). After 4 h at $20^{\circ} \mathrm{C}$ clean conversion into 38 had taken place: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 8.75(1 \mathrm{H}, \mathrm{s}), 7.85(1 \mathrm{H}, \mathrm{s}), 7.71(2 \mathrm{H}$, d), $7.5-7.3(5 \mathrm{H}, \mathrm{m}), 7.2(3 \mathrm{H}, \mathrm{m}), 7.1(1 \mathrm{H}, \mathrm{s}), 4.12(1 \mathrm{H}, \mathrm{d}, J=12$ $\mathrm{Hz}), 3.94(1 \mathrm{H}, \mathrm{t}), 3.50(1 \mathrm{H}, \mathrm{t}), 2.98(1 \mathrm{H}, \mathrm{d}), 2.67(1 \mathrm{H}, \mathrm{t}), 2.15(3$ H, s), 1.98 ($3 \mathrm{H}, \mathrm{s}$).

Similar treatment of $\mathbf{3 5}$ (10 mg) with p-toluenesulfonic acid (excess) gave 38: $13 \mathrm{mg},>95 \%{ }^{2} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 8.87(1 \mathrm{H}, \mathrm{s})$, $7.90(1 \mathrm{H}, \mathrm{s}), 7.77(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.57$ $(1 \mathrm{H}, \mathrm{t}), 7.43(2 \mathrm{H}, \mathrm{t}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{s}), 4.02(3$ $\mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.46(3 \mathrm{H}, \mathrm{s}), 2.16(3 \mathrm{H}$, s), 2.18 ($3 \mathrm{H}, \mathrm{s}$).

2-($1 H$-Indol-2-ylcarbonyl)-1,2,8,8a-tetrahydro-7-methylcyclopropa[c]pyrrolo [3,2-c]indol-4(5H)-one (41). To the diamine $2(10 \mathrm{mg})$ suspended in THF ($200 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(2.3 \mathrm{mg})$. After 15 \min at $0^{\circ} \mathrm{C}$ a clear solution was formed. To this solution was added indole-2-carbonyl chloride (9.9 mg), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Workup and chromatography of the residue over silica gel eluting with THF/EtOAc (1:1) gave 41 (2 mg), identical with an authentic sample (TLC, NMR) kindly supplied by Dr. Warpehoski (The Upjohn Company).

Acknowledgment. The National Institutes of Health (GM 32718) are thanked for their support of this research. The National Science Foundation is acknowledged for their contribution toward the purchase of a $360-\mathrm{MHz}$ NMR spectrometer (CHE 81-05004). Drs. Warpehoski, Martin, Kelly, and Wierenga (The Upjohn Company) are thanked for many discussions and exchanges of information. Dr. Craig Wilcox, University of Texas at Austin, is thanked for suggesting the deuterium experiment.

Supplementary Material Available: Description of experimental and characterization details for compounds $\mathbf{8 , 1 0 , 1 3 , 2 1 , 2 2 , 2 3}$, $\mathbf{2 4}, \mathbf{2 5}, 26$, and 27 (3 pages). Ordering information is given on any current masthead page.

Studies on the Synthesis of the Antitumor Agent CC-1065. Synthesis of PDE I and PDE II, Inhibitors of Cyclic Adenosine- $3^{\prime}, 5^{\prime}$-monophosphate Phosphodiesterase Using the 3,3'-Bipyrrole Strategy

Paul Carter, Steven Fitzjohn, Serge Halazy, and Philip Magnus*
Contribution from the Department of Chemistry, Indiana University, Bloomington, Indiana 47405. Received August 8, 1986

Abstract

In the model series tert-butyl 2,4-pentadienoate was treated with $\operatorname{TosCHMeNC} / \mathrm{NaH}$ to give the pyrrole 18, which was converted into the $3,3^{\prime}$-bipyrrole 20 . Treatment of the pyrrole 20 with oxalyl chloride gave the o-quinone 21 , which was reduced and concomitantly protected to give 24. O-Methylation of 24 using 29 gave 26. Subsequently, transformations converted 29 into the PDE I/II model 33. Application of this strategy to the 5 -carboxymethyl series gave the $3,3^{\prime}$-bipyrrole 36 . It was converted into the o-quinone 42 and subsequently into PDE I (2) and PDE II (3).

In the preceding paper in this issue we have described the synthesis of the unprotected A portion of CC-1065, 1, using the 3,3'-bipyrrole strategy. ${ }^{1}$ This strategy, in principle, should be equally applicable to the synthesis of the separated constituents of the B / C portion, which are natural products in their own right and known as PDE $\mathrm{I}\left(\mathbf{2} ; \mathrm{R}=\mathrm{CONH}_{2}\right)$ and $\operatorname{PDE~II~}(3 ; \mathrm{R}=\mathrm{Ac}) .{ }^{2}$ They are inhibitors of cyclic adenosine- $3^{\prime}, 5^{\prime}$-monophosphate phosphodiesterase, and they have been the subject of three total

[^0]syntheses. ${ }^{3}$ It appears that the B / C portion of CC-1065 is necessary for binding into the minor groove of DNA. ${ }^{4}$

[^1]Scheme I

In order to apply the $3,3^{\prime}$-bipyrrole strategy (as outlined in Scheme II of the preceding paper in this issue), a few extra considerations must be evaluated.

The presence of an electron-withdrawing group (EWG) at $\mathrm{C}-4^{\prime}$ in 6 is essential for the conversion of 7 into 6 using TosMIC chemistry. This functional group (EWG) must be removed at a later stage to arrive at 4.

The construction of 4 requires that the OMe group in ring B is placed into position in a regiospecific manner, perhaps by precursors such as $\mathbf{5}$ or their equivalents. To explore Scheme I in a general way, it was decided to conduct some model work where the $\mathrm{CO}_{2} \mathrm{R}^{\prime \prime}$ group had been replaced by a CH_{3} group. The reasons for this are twofold. First, the required carboalkoxy TosMIC derivatives 8 are not available. Attempts to make them always result in oxazoles, which do not enter into the required pyrrole annulation process. ${ }^{5}$ Second, it might be possible at an appropriate stage in the synthesis to oxidize an α-methylpyrrole to the corresponding carboxylate derivative, thus converting a "model" compound into the "real" system.

Model Systems. A suitable diene to act as a Michael acceptor for TosMIC is 1 -(phenylsulfonyl)-1,3-butadiene (10). ${ }^{6}$ When this electron-deficient diene was treated with TosCHMeNC/ $\mathrm{NaH} / \mathrm{THF} / \mathrm{Me}_{2} \mathrm{SO} / 20^{\circ} \mathrm{C}$, the 2,4 -disubstituted pyrrole 11 was isolated in 64% yield. This result is remarkable considering the

[^2]extreme ease with which $\mathbf{1 0}$ undergoes anionic polymerization when exposed to bases. The pyrrole 11 was converted into the

N-phenylsulfonyl derivative 12 and was treated with TosMIC/ $\mathrm{NaH} / \mathrm{THF} / \mathrm{Me}_{2} \mathrm{SO} / 20^{\circ} \mathrm{C}$ to give the required $3,3^{\prime}$-bipyrrole 13 (72\%). All attempts to conduct regioselective acylation chemistry on 13 lead to mixtures, and reduction (Raney nickel) removed the N-phenylsulfonyl group, rather than the C-phenylsulfonyl group. Consequently, we required a method for selectively removing the C-phenylsulfonyl group, which would at the same time introduce a useful functional group at $\mathrm{C}-2^{\prime}$ (see 14). Treatment of $\mathbf{1 2}$ with $\mathrm{EtO}_{2} \mathrm{CCH}_{2} \mathrm{NC} / \mathrm{NaH} / \mathrm{HMDS} / \mathrm{Me}_{2} \mathrm{SO} / \mathrm{THF} / 20^{\circ} \mathrm{C}$ gave the $3,3^{\prime}$-bipyrrole $14(70 \%),{ }^{7}$ where the C-phenylsulfonyl group has been lost. ${ }^{8}$ Attempts to further manipulate 14 via the derived sulfoxide 15 or methyl ketone 16 in order to arrive at the glyoxal or glyoxalic acid $\mathbf{1 7}$ were not successful. ${ }^{9}$
To avoid the strongly deactivating effect of the C-phenylsulfonyl substituent, it was decided to examine the possibility of having an ester at $\mathrm{C}-4^{\prime}\left(\right.$ in $6, \mathrm{EWG}=\mathrm{CO}_{2} \mathrm{R}$), which would eventually have to be dealkylated and the resulting acid decarboxylated.

[^3]tert-Butyl 2,4-pentadienoate was treated with TosCHMeNC/ $\mathrm{NaH} / \mathrm{THF} / 20^{\circ} \mathrm{C}$ to give 18 (75%), which directly converted into the N-phenylsulfonyl derivative 19 (65\%). Pyrrole annulation of 19 with TosMIC/NaH/THF/20 ${ }^{\circ} \mathrm{C}$ gave the required $3,3^{\prime}-$ bipyrrole 20 (75%).

When a solution of the bipyrrole 20 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was treated with oxalyl chloride in ether, and the mixture warmed to $20^{\circ} \mathrm{C}$, the o-quinone 21 (85%) crystallized directly from the reaction mixture. ${ }^{10}$ If the quinone 21 is reduced to the corresponding hydroquinone 22, this compound is too unstable and cannot be O-methylated. As a result, we required a method which would reduce the quinone 21 to the hydroquinone oxidation level and at the same time selectively protect it against reoxidation. Reduction of the quinone 21 with $\mathrm{P}(\mathrm{OMe})_{3}$ in benzene gave the cyclic oxyphosphorane 23 , which was readily hydrolyzed in wet THF to a single phenolic phosphate ester $24(100 \%) .{ }^{11}$ The regiochemistry depicted for $\mathbf{2 4}$ is based upon steric considerations that place the phosphate ester group on the least hindered hydroxyl group. Moreover, the phosphate ester can migrate to the adjacent hydroxyl group, especially under basic conditions.

$\underline{23}$

$\underline{24}$

24a
11

25 $\mathrm{R}^{1}=\mathrm{Me}$
26 $\mathrm{R}^{1}=\mathrm{H}$

24 b
28 $\mathrm{R}^{1}=\mathrm{H}$

33

When 24 was exposed to $\mathrm{Me}_{2} \mathrm{SO}_{4} / \mathrm{Ba}(\mathrm{OH})_{2} / \mathrm{DMF}$ a mixture of $\mathbf{2 5}$ and 27 (1:1) was isolated, whereas $\mathrm{Me}_{2} \mathrm{SO}_{4} / \mathrm{K}_{2} \mathrm{CO}_{3} /$ acetone

[^4]gave $\mathbf{2 5}$ and $\mathbf{2 7}$ in a 9:1 ratio. The regiochemistry of the O methylation in 25 was confirmed by single-crystal X-ray crystallography. ${ }^{12}$ Unfortunately, while the above methylation conditions gave predominantly the required regiochemistry, the problem of N -methylation could not be avoided. Treatment of 24 with a wide range of methylating agents ${ }^{13}$ (O-methyl $-N, N^{\prime}$ diisopropylisourea, $\mathrm{MeI} / n-\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{Et}_{2} \mathrm{OBF}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Ag}_{2} \mathrm{O} / \mathrm{MeI} /$ acetone, and many others) did not produce any detectable amount of the desired methyl ether 26. Fortunately, we found that the N methylation of $\mathbf{2 4}$ was avoided by treatment of $\mathbf{2 4}$ with the cyclic oxaphospholene 29 [prepared from $\mathrm{P}(\mathrm{OMe})_{3}$ and methyl vinyl ketone] in THF $/ 20^{\circ} \mathrm{C}$ to give $\mathbf{2 6 (5 0 \%) . { } ^ { 1 4 } \text { The structure of } 2 6}$ was established by N -methylation with $\mathrm{NaH} / \mathrm{MeI}$ to give $\mathbf{2 5}$.

Removal of the phosphate ester group with $\mathrm{NaOMe} / \mathrm{MeOH}$ followed by $\mathrm{Ac}_{2} \mathrm{O}$ gave 30. The tert-butyl ester was readily hydrolyzed by trifluoroacetic acid at $20^{\circ} \mathrm{C}$ in chloroform to give 31. ${ }^{15}$ After considerable experimentation, it was found that 31 could be decarboxylated by heating with excess NEt_{3} in toluene at $110^{\circ} \mathrm{C}$ to give 32. The 2,3 -double bond in 32 was selectively reduced by exposure to $\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{TFA} / 0^{\circ} \mathrm{C}$ followed by $\mathrm{Ac}_{2} \mathrm{O}$ to give the diacetate $33(60 \%)$. ${ }^{16}$
The above model study has solved the problem of constructing the B ring with correct regiochemistry, and a method for removing the $\mathrm{CO}_{2} \mathrm{Bu}-t$ group (EWG), Scheme I, is available. Since we were unable to oxidize the 2 -methyl group to a carboxylic acid in any of the tricyclic compounds $\mathbf{2 6}, \mathbf{3 0}$, or $\mathbf{3 3}$, this functional group must be present in the correct oxidation state from an early stage. ${ }^{17}$

5- $\mathrm{CO}_{2} \mathrm{Me}$ Pyrrole Series. Since the model series has established that we need the EWG at C-4' (Scheme I, structure 6) to be an ester, it is therefore necessary to be able to distinguish between the two esters ($\mathrm{C}-5$ and $\mathrm{C}-4^{\prime}$). Originally, we carried out several

$34 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Bu} \mathrm{t}^{\mathrm{t}}$
$37 \mathrm{R}=\mathrm{X}=\mathrm{H}$
$\mathrm{R}=\mathrm{Bn}, \mathrm{R}^{1}=\mathrm{Me}$
38 $R=H \quad X=\mathrm{CHO}$
$36 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Bn}$
39 $\mathrm{R}=\mathrm{Ts}, \mathrm{X}=\mathrm{CHO}$

40
transformations with the substrates 34 and 35 , but found that the tert-butyl ester was incompatible with the oxalyl chloride o-quinone step (unlike the model series!), ${ }^{18}$ and the benzyl ester 35 did not

[^5]Scheme II

provide the necessary distinction between the C-5 (benzyl) and C-4' (methyl) esters. ${ }^{19}$ Consequently, it was decided to reverse the ester alkyl groups, C-5 (methyl) and C-4' (benzyl).

Methyl pyrrole-2-carboxylate ${ }^{20}$ (37) was formylated with $\mathrm{Cl}_{2} \mathrm{CHOMe} / \mathrm{AlCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{21}$ to give the aldehyde $38(80 \%)$, which was activated toward addition reactions to the formyl group by N -tosylation, $\mathrm{TsCl} / \mathrm{NaH} / \mathrm{THF}$, to furnish 39. Treatment of 39 with (EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn} / \mathrm{NaH} / \mathrm{THF}$ provided the $E \alpha$,-β-unsaturated ester 40 (80%), which on exposure to TosMIC/ LiHMDS/THF/-78 ${ }^{\circ} \mathrm{C}$ gave the crucial $3,3^{\prime}$-bipyrrole 36 (65%). Both pyrrole rings in 36 are deactivated toward electrophilic substitution, but the A ring, by virtue of the N -Ts group, is more so. Treatment of 36 with oxalyl chloride $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0^{\circ} \mathrm{C}$ cleanly gave 41; further exposure of 41 to $\mathrm{SnCl}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /-78{ }^{\circ} \mathrm{C}$ accomplished ring closure into the 2 -position to yield the o-quinone $42(72 \%), \lambda_{\max } 460,355$, and 262 nm .

By use of the reduction procedure developed in the model sequence, the o-quinone 42 was treated with triethyl phosphite/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed immediately by aqueous hydrolysis of the cyclic oxyphophorane 43 to give a single phenolic phosphate ester 44 (83\%). While the regioisomer, depicted as 44 , is the least sterically encumbered adduct compared to 47 , the phenolic hydroxyl group is correspondingly more hindered. Treatment of 44 with a variety of O-methylating agents, including the oxaphospholene 29 (used successfully in the model series), gave the wrong regioisomer 48. In the series derived from 35, with the benzyl and methyl esters transposed, the structure was established by single-crystal X-ray crystallography. ${ }^{22}$ Presumably, the difference between $\mathbf{4 4} \rightleftharpoons \mathbf{4 7}$ and the model series $\mathbf{2 4} \rightleftharpoons \mathbf{2 4 b}$ is the increased acidity of the phenolic hydroxyl group in 47. Fortunately, a solution to the problem of regiospecific O -methylation of $\mathbf{4 4}$ was discovered when it was found that treatment of 44 with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{Et}_{2} \mathrm{O} /-70^{\circ} \mathrm{C}$ gave $45(50 \%)$ along with 48 in ratios of $3: 1$ ($1-\mathrm{mM}$ scale) to $9: 1$ ($10-\mathrm{mM}$ scale). The specific ratios of solvents and scale are vital to the success of this reaction, and the details are given in the Experimental Section.

[^6]Reductive cleavage of the N-Ts group of 45 with $\mathrm{Al} / \mathrm{Hg}$ amalgam/THF gave 49 (90%), which was hydrogenolyzed over $10 \% \mathrm{Pd} / \mathrm{C} / \mathrm{EtOAc}$ to give the carboxylic acid $50(90 \%)$. The decarboxylation conditions that were successful in the model series did not work. After considerable experimentation it was found that treatment of 50 in anisole at $130^{\circ} \mathrm{C}$ in the presence of Cu powder (8 equiv) and $i-\operatorname{Pr}_{2} \mathrm{NEt}$ (150 equiv)/DMF (catalyst) gave 51 (50-60\%).

Reduction of the indole 2,3-double bond in $\mathbf{5 1}$ was carried out by using $\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0-20{ }^{\circ} \mathrm{C}$ to give the dihydro derivative 52 , which was directly treated with $\mathrm{Ac}_{2} \mathrm{O}$ to give 53 (60% from 51). Similarly, treatment of 52 with $\mathrm{NaOCN} / \mathrm{AcOH}$ produced the corresponding carbamate 51 (56% from 51).
Standard methods for the hydrolysis of phenolic phosphate esters did not result in the required phenols $\mathbf{5 5} / \mathbf{5 6}$; only extensive decomposition occurred. Since it is known that alkoxy groups in phosphate esters are readily exchanged by alcoholysis, ${ }^{23}$ we reasoned that treatment of a dialkoxy phosphate with a triol would result in exchange, followed by intramolecular attack of the third hydroxyl group on phosphorus to give a pentacoordinate species that could readily expel the phenolate leaving group (Scheme II).
When 53 was treated with $\mathrm{KOH} / \mathrm{MeOH} / \mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, the phenol 55 (80\%) was produced. Similarly, 54 gave $56(68 \%)$. If the triol $\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$ is omitted, neither 55 nor 56 is formed. Base hydrolysis of 55 with $1 \mathrm{~N} \mathrm{KOH} / \mathrm{EtOH}$ gave PDE II (3) (60%), and treatment of 56 with $0.01 \mathrm{~N} \mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}$ gave PDE I (2) (75%).

The recent studies from the Upjohn group have described methods for coupling the A portion of CC-1065 to the B/C portion, and more importantly, the synthesis of analogues such as 57 , which do not exhibit the liver toxicity problems associated

with CC-1065 yet are equipotent in both in vitro and in vivo assays. In view of this extensive program, and to avoid unnecessary duplication of effort, the studies reported here complete our own program on CC-1065. ${ }^{24}$

Conclusion. In summary, the $3,3^{\prime}$-bipyrrole approach to the synthesis of the separate components of CC-1065 has proven successful in all respects and has provided a unified strategy. The future of CC-1065 as a chemotherapeutic agent must evolve from

[^7]the construction of analogues of similar topology and hopefully reduced toxicity. ${ }^{25}$

Experimental Section

Ethyl 5-Methyl-1-(phenylsulfonyl)-3,3'-bipyrrole-2'-carboxylate (14). The pyrrole $12(200 \mathrm{mg}, 0.51 \mathrm{mM}$) and ethyl isocyanoacetate (68 mg , 0.6 mM) dissolved in THF (3 mL) were added to a suspension of NaH ($17 \mathrm{mg}, 0.7 \mathrm{mM}$) in ether (2 mL) containing HMDS ($85 \mathrm{mg}, 0.7 \mathrm{mM}$) at $0^{\circ} \mathrm{C}$. To this mixture, $\mathrm{Me}_{2} \mathrm{SO}(0.3 \mathrm{~mL})$ was added, and the immediate evolution of hydrogen was observed. After 10 min at $0^{\circ} \mathrm{C}$, followed by 4 h at $20^{\circ} \mathrm{C}$, the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed with water and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation in vacuo followed by chromatography of the residue over silica gel eluting with petroleum ether/EtOAc (1:1) gave 14: $128 \mathrm{mg}, 70 \%$; $\mathrm{mp} 119-121^{\circ} \mathrm{C}$ (from petroleum ether/EtOAc); IR $\left(\mathrm{CHCl}_{3}\right) 3380$, $2985,1680,1560,1440,1410,1350,1270,1180,1090,1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.25(1 \mathrm{H}, \mathrm{m}), 7.3-8.0(6 \mathrm{H}, \mathrm{m}), 6.92(1 \mathrm{H}$, t), $6.45(2 \mathrm{H}, \mathrm{m}), 4.4(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 2.35(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{t})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{SN}_{2}$: C, $60.32 ; \mathrm{H}, 5.06 ; \mathrm{N}, 7.82$. Found: C, 60.53; H, 5.20; N, 7.60.
tert-Butyl 3-[1-(Phenylsulfonyl)-5-methylpyrrol-3-yl]acrylate (19). A solution of methyl TosMIC ($6.27 \mathrm{~g}, 30 \mathrm{mM}$) and tert-butyl penta-2,4dienoate ($4.62 \mathrm{~g}, 30 \mathrm{mM}$) in THF (25 mL) was added dropwise to a suspension of $\mathrm{NaH}(840 \mathrm{mg}, 35 \mathrm{mM}$) in THF (10 mL) and HMDS (4.83 $\mathrm{g}, 30 \mathrm{mM}$) at $20^{\circ} \mathrm{C}$. A few drops of $\mathrm{Me}_{2} \mathrm{SO}$ were added, and rapid hydrogen evolution was observed. After 15 h at $20^{\circ} \mathrm{C}$, the mixture was evaporated in vacuo, and the residue was dissolved in EtOAc (200 mL) and hydrolyzed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The mixture was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give 18 as a brown oil, used directly in the next step.

The crude material prepared as above was dissolved in THF (25 mL) and added to a suspension of $\mathrm{NaH}(720 \mathrm{mg}, 30 \mathrm{mM})$ in THF (10 mL) containing HMDS ($4.83 \mathrm{~g}, 30 \mathrm{mM}$) at $20^{\circ} \mathrm{C}$ (ca. 10 mg of imidazole was also added). After 2 h at $20^{\circ} \mathrm{C}$, phenylsulfonyl chloride (5.295 g , 30 mM) was slowly added to the above mixture. After 1 h at $20^{\circ} \mathrm{C}$, the mixture was evaporated under reduced pressure, and the residue, was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL), hydrolyzed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo to give a brown oil, which was purified by chromatography over silica gel eluting with petroleum ether/EtOAc (1:1) to give 19: 6.76 g , 65%; mp 122-124 ${ }^{\circ} \mathrm{C}$ (from petroleum ether/EtOAc); IR (CHCl_{3}) 3120 , $1690,1630 \mathrm{~cm}^{-1} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.1-7.8(7 \mathrm{H}, \mathrm{m}), 6.08$ (1 $\mathrm{H}, \mathrm{m}), 5.95(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{hZ}), 2.25(3 \mathrm{H}, \mathrm{s}), 1.75(9 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.23 ; \mathrm{H}, 6.09 ; \mathrm{N}, 4.03$. Found: $\mathrm{C}, 62.08$; H, 5.95; N, 3.90 .
tert-Butyl 5-Methyl-1-(phenylsulfonyl)-3,3'-bipyrrole-4'-carboxylate (20). A solution of TosMIC ($4.095 \mathrm{~g}, 21 \mathrm{mM}$) and the pyrrole 19 (6.94 g, 20 mM) in THF (20 mL) was slowly added to a suspension of NaH $(600 \mathrm{mg}, 25 \mathrm{mM})$ in THF (10 mL) containing HMDS ($3.22 \mathrm{~g}, 20 \mathrm{mM}$) at $20^{\circ} \mathrm{C}$. After 1.5 h at $20^{\circ} \mathrm{C}$, the mixture was worked up as above to give an oil, which was purified by chromatography over silica gel eluting with petroleum ether/EtOAc (1:1) to give 20: $5.79 \mathrm{~g}, 75 \% ; \mathrm{mp} 160-161$ ${ }^{\circ} \mathrm{C}$ (from MeOH); IR $\left(\mathrm{CHCl}_{3}\right) 3440,1680,1430 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (90 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(1 \mathrm{H}, \mathrm{m}), 7.3-7.8(6 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{t}), 6.6(1$ $\mathrm{H}, \mathrm{t}), 6.15(1 \mathrm{H}, \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s}), 1.4(9 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 62.16 ; \mathrm{H}, 5.74 ; \mathrm{N}, 7.25$. Found: C, 62.22; H, 5.90; N, 7.15 .
tert-Butyl 3,4,5,6-Tetrahydro-6-(phenylsulfonyl) $\mathbf{4 , 5}$-dioxobenzo[1,2-b:4,3-b]dipyrrole-7-carboxylate (21). The $3,3^{\prime}$-bipyrrole 20 ($1.73 \mathrm{~g}, 4.5$ mM) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added to a solution of oxalyl chloride (700 $\mathrm{mg}, 5.5 \mathrm{mM}$) in ether (4 mL) at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $20^{\circ} \mathrm{C}$, and a red-orange precipitate separated. After 2 h at $20^{\circ} \mathrm{C}$ ether (50 mL) was added and the precipitate filtered. The orange-red solid was washed with ether ($5 \times 30 \mathrm{~mL}$) and dried in vacuo to give 21: 1.68 g, 85%; mp $320^{\circ} \mathrm{C}$ (dec); UV (MeOH) 365, 255, $220 \mathrm{~nm}(\epsilon 3800,4500$, 7500). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 59.99 ; \mathrm{H}, 4.58 ; \mathrm{N}, 6.36$. Found: C, 59.66; H, 4.53; N, 6.04. The compound was too insoluble (even in $\mathrm{Me}_{2} \mathrm{SO}$) to give presentable ${ }^{1} \mathrm{H}$ NMR data.
tert - Buty 1 3,6-Dihydro-4-((dimethoxyphosphinyl)oxy)-5-hydroxy- -7 -methyl-6-(phenylsulfonyl)benzo[1,2-b:4,3-b]dipyrrole-1-carboxylate (24). Trimethyl phosphite ($496 \mathrm{mg}, 4 \mathrm{mM}$) in benzene (3 mL) was added to

[^8]a suspension of the o-quinone $21(240 \mathrm{mg})$ in benzene (20 mL). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h and evaporated, and the crude product 23 (300 mg) was used directly in the next stage: $1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right)$ $3200,2920,1680,1580,1495,1440,1360,1280,1140,1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.3(1 \mathrm{H}, \mathrm{m}), 7.05-7.9(7 \mathrm{H}, \mathrm{m}), 3.63(9 \mathrm{H}$, d, $J=13 \mathrm{~Hz}$), $2.60(3 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s})$.

The dioxaphospholene 23 ($300 \mathrm{mg}, 0.53 \mathrm{mM}$) was dissolved in THF $(20 \mathrm{~mL})$ and water (5 mL). After 1 h at $20^{\circ} \mathrm{C}$, the mixture was evaporated and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with water and saturated brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated in vacuo to give 24: $218 \mathrm{mg}, 75 \%$; mp $169-172{ }^{\circ} \mathrm{C}$ (from benzene/hexane); IR $\left(\mathrm{CHCl}_{3}\right) 3300,2990,1690$, $1510,1440,1390,1285,1260,1135,1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.1(1 \mathrm{H}, \mathrm{m}), 9.5(1 \mathrm{H}, \mathrm{s}), 7.25-7.85^{\prime}(7 \mathrm{H}, \mathrm{m}), 3.90(6 \mathrm{H}$, $\mathrm{d}, J=12 \mathrm{~Hz}), 2.55(3 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{9} \mathrm{~N}_{2} \mathrm{SP}: \mathrm{C}, 52.36 ; \mathrm{H}, 4.94 ; \mathrm{N}, 5.09$. Found: C, 52.19; H, 4.82; $\mathrm{N}, 5.04$.

Methylation of 24. Treatment of $24(30 \mathrm{mg}, 0.055 \mathrm{mM})$ in acetone (5 mL) with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ (100 mg) and $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ under the usual experimental conditions gave 25: 70\%; ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.3-7.8(7 \mathrm{H}, \mathrm{m}), 4.03(3 \mathrm{H}, \mathrm{s}), 3.7(3 \mathrm{H}, \mathrm{s}), 3.63(6 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz})$, $2.75(3 \mathrm{H}, \mathrm{s}), 1.58(9 \mathrm{H}, \mathrm{s}) .27: 8 \% ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ${ }_{7.2-7.55}(7 \mathrm{H}, \mathrm{m}), 4.05(3 \mathrm{H}, \mathrm{s}), 4.00(3 \mathrm{H}, \mathrm{s}), 3.9(6 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz})$, $2.55(3 \mathrm{H}, \mathrm{s}), 1.50(9 \mathrm{H}, \mathrm{s})$. The structure of 25 was proven by singlecrystal X-ray crystallography.

The oxaphospholene $29(58 \mathrm{mg}, 0.3 \mathrm{mM})$ in THF (10 mL) was added to a solution of $24(86 \mathrm{mg}, 0.15 \mathrm{mM})$ in THF $(6 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. After 15 h at $20^{\circ} \mathrm{C}$, water (3 mL) and $\mathrm{NaHSO}_{3}(150 \mathrm{mg}$) were added. After 3 h at $20^{\circ} \mathrm{C}$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated in vacuo to give 26: $45 \mathrm{mg}, 50 \%$, purified by preparative TLC [silica gel, eluting with hexane/EtOAc (7:3)]; mp $102-103{ }^{\circ} \mathrm{C}$: IR (CHCl_{3}) $3360,1690,1625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.25(1 \mathrm{H}, \mathrm{m}), 7.7(1 \mathrm{H}, \mathrm{m}), 7.25-7.65(6 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}$, s), $3.68(6 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 2.7(3 \mathrm{H}, \mathrm{s}), 1.52(9 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{9} \mathrm{~N}_{2} \mathrm{SP}: \mathrm{C}, 53.19 ; \mathrm{H}, 5.18 ; \mathrm{N}, 4.96$. Found: $\mathrm{C}, 53.00$; H , 5.18; N, 4.75.

Treatment of $26(25 \mathrm{mg}, 0.043 \mathrm{mM})$ in THF (2 mL)/ $\mathrm{Me}_{2} \mathrm{SO}(1 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ with $\mathrm{NaH}(5 \mathrm{mg}, 0.25 \mathrm{mM})$ and $\mathrm{MeI}(50 \mathrm{mg})$ gave 25 .

3,6-Dihydro-4-acetoxy-5-methoxy-7-methyl-6-(phenylsulfonyl)benzo-[1,2-b:4,3-b]dipyrrole (32). The phosphate ester 26 ($34 \mathrm{mg}, 0.06 \mathrm{mM}$) in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was treated with $\mathrm{NaOMe}(0.2 \mathrm{~mL}$ of a 16.6 M soln). After 3 h at $25^{\circ} \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added, and the mixture was evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed successively with $2 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and water (5 mL). The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extract was evaporated in vacuo to give 30: 80%; IR $\left(\mathrm{CHCl}_{3}\right) 3300,1770,1695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.6(1$ $\mathrm{H}, \mathrm{m}), 7.25-7.8(7 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.78(3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 1.64$ $(9 \mathrm{H}, \mathrm{s})$. This material was used directly in the next stage.

To a solution of $\mathbf{3 0}(50 \mathrm{mg}, 0.1 \mathrm{mM})$ in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added trifluoroacetic acid (0.3 mL). After 1 h at $20^{\circ} \mathrm{C}$ the mixture was concentrated under reduced pressure, and the residue was washed with hexane/ether ($20 \mathrm{~mL}, \mathrm{I}: 1$). The residue was dissolved in toluene (10 mL), triethylamine (500 mg) was added, and the resulting solution was heated at $10^{\circ} \mathrm{C}$ for 6 h . The mixture was evporated to give 32: 32 mg , 80%; IR $\left(\mathrm{CHCl}_{3}\right) 3200,1760,1440,1350,1190,1120,1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $88.2(1 \mathrm{H}, \mathrm{m}), 7.25-7.75(6 \mathrm{H}, \mathrm{m}), 7.1(1 \mathrm{H}$, $\mathrm{m})$, $6.55(1 \mathrm{H}, \mathrm{m}), 3.7(3 \mathrm{H}, \mathrm{s}), 2.7(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}, m / e$ calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 398$, found 398.

1,2-Dihydro Derivative 33. To a solution of $32(20 \mathrm{mg})$ in trifluoroacetic acid (0.3 mL) was added triethylisiane (0.3 mL), and the mixture was stirred at $20^{\circ} \mathrm{C}$ in 1 h . The mixture was concentrated under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL), washed with saturated aqueous NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was dissolved in $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$ and evaporated in vacuo to give 33: $12 \mathrm{mg}, 60 \%$; IR $\left(\mathrm{CHCl}_{3}\right) 1765,1640,1440,1360$, 1170 ; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.43(5 \mathrm{H}, \mathrm{m}), 6.23(1 \mathrm{H}$, s), $4.16(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.06(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.69$ $(3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}, \mathrm{m} / e$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ 442, found 442.
(E)-Benzyl 3-[1-((4-Methylphenyl)sulfonyl)-5-(methoxycarbonyl)-pyrrol-3-yl]acrylate (40). To a suspension of $\mathrm{NaH}(1.2 \mathrm{~g}, 25 \mathrm{mM}$) in THF (30 mL) at $-30^{\circ} \mathrm{C}$ was added (EtO) $)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}(6.136 \mathrm{~g}$, 21.45 mM) dropwise, and the mixture was warmed to $0^{\circ} \mathrm{C}$. After the mixture recooled to $-30^{\circ} \mathrm{C}$, the pyrrole $39(6.2 \mathrm{~g}, 20 \mathrm{mM}$) in THF (30 mL) was added, with the temperature maintained at about $-10^{\circ} \mathrm{C}$. After 5 min the mixture was quenched with 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL), and the THF was evaporated under reduced pressure. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a tan solid (8.77 g). Recrystallization from acetone gave 40: $6.26 \mathrm{~g}, 70 \% ; \mathrm{mp} 131-133^{\circ} \mathrm{C}$; IR (Nujol) 3140, 1735,1700 ,
$1635 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.80(3 \mathrm{H}, \mathrm{m}), 7.60(1$ $\mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.33-7.13(8 \mathrm{H}, \mathrm{m}), 6.23(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.23$ ($2 \mathrm{H}, \mathrm{s}$), $3.72(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}$, 62.86; H, 4.82; N, 3.19. Found: C, 63.03; H, 4.86; N, 3.29.

Benzyl 5-(Methoxycarbonyl)-1-((4-methylphenyl)sulfonyl)-3,3'-bi-pyrrole-4'-carboxylate (36). To a solution of TosMIC ($2.240 \mathrm{~g}, 11.48$ $\mathrm{mM})$ and the pyrrole $40(4 \mathrm{~g}, 9.2 \mathrm{mM})$ in THF $(80 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added LiHMDS [prepared from HMDS ($4 \mathrm{~mL}, 19 \mathrm{mM}$) and 1.36 M $n-\mathrm{BuLi}(13.6 \mathrm{mM})$ in THF $(20 \mathrm{~mL})$]. After 15 min at $-70^{\circ} \mathrm{C}$, the mixture was quenched with 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and evaporated under reduced pressure to remove the THF. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered, and silica gel (10 g) was added. After evaporation the residue (absorbed on the added silica gel) was chromatographed over silica gel (30 g) eluting with $5 \% \mathrm{EtOAc} / 25 \%$ petroleum ether $/ 70 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $36(3.962 \mathrm{~g})$ as a pale-yellow solid. Recrystallization from acetone gave 36: 2.826 g, 65%; mp 152-154 ${ }^{\circ} \mathrm{C}$; IR (Nujol) $3480,1720,1687,1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(1 \mathrm{H}$, s), $8.13(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 7.90$, $7.80(2 \mathrm{H}, \mathrm{AB}$ q,$J=8 \mathrm{~Hz}), 7.60-7.13(9 \mathrm{H}, \mathrm{m}), 6.80(1 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz})$, $5.23(2 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.77(3 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 62.75 ; \mathrm{H}, 4.63$; N, 5.85 . Found: $\mathrm{C}, 62.58 ; \mathrm{H}, 4.51$; $\mathrm{N}, 5.80$. The crude material can be used directly in the next stage.

Benzyl 7-(Methoxycarbonyl)-3,4,5,6-tetrahydro-4,5-diox0-6-((4methylphenyl) sulfonyl) benzo $[1,2-b: 4,3-b]$ dipyrrole-1-carboxylate (42). To a solution of the bipyrrole $36(1.912 \mathrm{~g}, 4.0 \mathrm{mM})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise oxalyl chloride ($450 \mu \mathrm{~L}, 52 \mathrm{mM}$). Further oxalyl chloride (0.15 mL) was added, and the mixture was left at $0^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$, and $\mathrm{SnCl}_{4}(468 \mu \mathrm{~L})$ was added dropwise. After 1.5 h , the mixture was quenched by dropwise addition of water (10 mL). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and silica gel (5 g) was added to the filtrate and evaporated under reduced pressure. The residue was chromatrographed on silica gel (15 g) eluting with $5 \% \mathrm{EtOAc} / 25 \%$ petroleum ether $/ 70 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $42(1.542 \mathrm{~g}, 72 \%)$ as a red solid: $\mathrm{mp} 180^{\circ} \mathrm{C}$ (slow dec); IR (Nujol) $3160,1705,1660,660 \mathrm{~cm}^{-1}$; UV (MeOH) 262, 355, $460 \mathrm{~nm}(\epsilon 12950,8690,320) ;{ }^{1} \mathrm{H}$ NMR (360 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.26(1 \mathrm{H}, \mathrm{s}), 8.43,8.41(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}$, $J=3 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{s}), 7.48-7.30(7 \mathrm{H}, \mathrm{m}), 5.36(2 \mathrm{H}, \mathrm{s}), 3.99(3 \mathrm{H}$, s), $2.39(3 \mathrm{H}, \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 60.90 ; \mathrm{H}, 3.79 ; \mathrm{N}$, 5.26. Found: C, $60.71 ; \mathrm{H}, 4.08 ; \mathrm{N}, 4.97$.

Benzyl 3,6-Dihydro-4-((diethoxyphosphinyl)oxy)-5-hydroxy-7-(me-thyloxycarbonyl)-6-((4-methylphenyl) sulfonyl)benzo [1,2-b:4,3-b]di-pyrrole-1-carboxylate (44). To a solution of the quinone 42 (1.24 g 2.3 $\mathrm{mM})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added (EtO$)_{3} \mathrm{P}(420 \mu \mathrm{~L} 2.45 \mathrm{mM})$. The red color of the quinone was discharged almost immediately, and the mixture evaporated at $20^{\circ} \mathrm{C}$ in vacuo to give 43 , which was dissolved in 2% aqueous THF (10.2 mL). After 1 h the solution was evaporated in vacuo, and the residue treated with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and filtered. The solid was washed with ether ($2 \times 10 \mathrm{~mL}$), and dried to give $44(1.216 \mathrm{~g} 78 \%)$, $\mathrm{mp} 152-153{ }^{\circ} \mathrm{C}$ (dec) (from acetone/cyclohexane). IR (Nujol) $3400-2600,1710,1460$ and $1150 \mathrm{~cm}^{-1}$. NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.63(1 \mathrm{H}, \mathrm{s}), 8.75(1 \mathrm{H}, \mathrm{bs}), 8.42(1 \mathrm{H}, \mathrm{s}), 7.88(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz})$, $7.68,7.74\left(2 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{q}, J=8 \mathrm{~Hz}\right), 7.5-7.3(5 \mathrm{H}, \mathrm{m}), 7.16,7.14(2 \mathrm{H}$, $\mathrm{BB}^{\prime} \mathrm{q}, J=8 \mathrm{~Hz}$), $5.37(2 \mathrm{H}, \mathrm{s}), 4.32(4 \mathrm{H}, \mathrm{m}), 3.98(3 \mathrm{H}, \mathrm{s}), 2.34(3$ $\mathrm{H}, \mathrm{s}), 1.36(6 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{11}$ PS: C, $55.52 ; \mathrm{H}, 4.66$. Found: $\mathrm{C}, 55.23 ; \mathrm{H}, 4.58$. The nitrogen analysis was low, and satisfactory MS data could not be obtained.

Benzyl 3,6-Dihydro-4-((diethoxyphosphinyl)oxy)-5-methoxy-7-(meth-oxycarbonyl)-6-((4-methylphenyl) sulfonyl)benzo $(1,2-b: 4,3-b]$ dipyrrole-1-carboxylate (45). Diazomethane in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ [prepared from Diazald (2.4 g)] was added to a solution of the phosphate ester 44 (1.97 $\mathrm{g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 20 h at $-78^{\circ} \mathrm{C}$ additional diazomethane [prepared from Diazald (1.2 g)] was added, and stirring was continued for 28 h . The mixture was quenched with $\mathrm{AcOH}(2 \mathrm{~mL})$ and evaporated at $20^{\circ} \mathrm{C}$ to give an oil (1.953 g), which was crystallized from acetone to give 45: $1.085 \mathrm{~g}, 53 \%$; mp $170-171^{\circ} \mathrm{C}$ (dec); IR (Nujol) $3270,1720,1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.75(1 \mathrm{H}, \mathrm{s})$, $8.40(1 \mathrm{H}, \mathrm{s}), 8.33,8.26\left(2 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{q}, J=8 \mathrm{~Hz}\right), 7.99(1 \mathrm{H}, \mathrm{d}, J=3$ $\mathrm{Hz}), 7.5-7.27(7 \mathrm{H}, \mathrm{m}), 5.42(2 \mathrm{H}, \mathrm{s}), 4.20(4 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}), 3.97(3$ $\mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s}), 2.37(3 \mathrm{H}, \mathrm{s}), 1.30(6 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{11}$ PS: C, $56.13 ; \mathrm{H}, 4.86 ; \mathrm{N}, 4.09$. Found: C, $56.21 ; \mathrm{H}$, $5.00 ; \mathbf{N}, 4.27$. Evaporation of the mother liquors and chromatography over silica gel gave $48: 140 \mathrm{mg}, 7 \% ; \mathrm{mp} 168-170^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.25(1 \mathrm{H}, \mathrm{br} s), 8.30(1 \mathrm{H}, \mathrm{s}), 7.65,7.55(2 \mathrm{H}$, $\left.\mathrm{AA}^{\prime} \mathrm{q}, J=8 \mathrm{~Hz}\right), 7.40(6 \mathrm{H}, \mathrm{br} s), 7.10,6.95\left(2 \mathrm{H}, \mathrm{BB}^{\prime} \mathrm{q}, J=8 \mathrm{~Hz}\right)$, $5.30(2 \mathrm{H}, \mathrm{s}), 4.40(4 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 2.30$ ($3 \mathrm{H}, \mathrm{s}$) , $1.30(6 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}$).

Benzyl 3,6-Dihydro-4-((diethoxyphosphinyl)oxy)-5-methoxy-7-(meth-oxycarbonyl)benzo[1,2-b:4,3-b]dipyrrole-1-carboxylate (49). A solution
of the phosphate ester $45(1.928 \mathrm{~g}, 2.8 \mathrm{mM})$ in THF (25 mL)/water $(0.3$ mL) at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{Al} / \mathrm{Hg}$ amalgam [prepared from Al foil $(310 \mathrm{mg})$], and the mixture was stirred for 15 h at $20^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and filtered through Celite. The Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 25 \mathrm{~mL})$, and the filtrate was concentrated to approximately 5 mL and filtered through silica gel, eluting with EtOAc. Evaporation of the filtrate in vacuo gave 49: $1.582 \mathrm{~g}, 90 \% ; \mathrm{mp}$ $135-137^{\circ} \mathrm{C}$ (from acetone/hexane); IR (Nujol 3330, 3190, $1705 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.70(1 \mathrm{H}, \mathrm{s}), 9.24(3 \mathrm{H}, \mathrm{s}), 8.18(1 \mathrm{H}$, $\mathrm{d}, J=3 \mathrm{~Hz}), 7.92(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}), 7.5-7.3(5 \mathrm{H}, \mathrm{m}), 5.42(2 \mathrm{H}, \mathrm{s})$, $4.26(4 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}), 4.08(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 1.27(6 \mathrm{H}, \mathrm{t}, J=$ 8 Hz). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}: \mathrm{C}, 56.60 ; \mathrm{H}, 5.13 ; \mathrm{N}, 5.28$. Found: C, 56.38 ; H, 5.39; N, 5.48 .

3,6-Dihydro-4-((diethoxyphosphinyl)oxy)-5-methoxy-7-(methoxycarbonyl)benzo $[1,2-b: 4,3-b]$ dipyrrole (51). The phosphate ester 49 $(1.110 \mathrm{~g}, 2.09 \mathrm{mM})$ in EtOAc (100 mL) was hydrogenated over 10% $\mathrm{Pd} / \mathrm{C}(120 \mathrm{mg})$ until no starting material (TLC) remained (ca. 20 h). Filtration and evaporation gave 50: $810 \mathrm{mg}, 88 \% ; \mathrm{mp} 246^{\circ} \mathrm{C}$ (dec) (EtOAc); IR (Nujol) $3320,3220,1710,1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 11.40(1 \mathrm{H}, \mathrm{s}), 11.13(1 \mathrm{H}, \mathrm{s}), 8.10(1 \mathrm{H}, \mathrm{d}, J=$ $2 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}), 4.23(4 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}), 4.00(3 \mathrm{H}, \mathrm{s})$, $3.90(3 \mathrm{H}, \mathrm{s}), 1.27(6 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}$: C, 49.10; H, 4.81; N, 6.36. Found: C, 49.34; H, 4.96; N, 6.56 .

A mixture of the acid $\mathbf{5 0}(500 \mathrm{mg}, 1.136 \mathrm{mM}$), copper powder (600 mg), diisopropylethylamine (30 mL), and anisole (40 mL) was heated at $130^{\circ} \mathrm{C}$ for 48 h . The mixture was evaporated under reduced pressure, and the residue was suspended in 10% aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extract was evaporated and the residue (532 mg) chromatographed over silica gel eluting with $20 \% \mathrm{EtOAc} /$ petroleum ether to give 51: $285 \mathrm{mg}, 60 \%$; mp $118-119^{\circ} \mathrm{C}$ (acetone/hexane); IR (Nujol) $3365,3220,1710,1460,1255$ $\mathrm{cm}^{-1} ; \mathrm{UV}(\mathrm{MeOH}) 208,247,316 \mathrm{~nm}(\epsilon 22000,11400,17400) ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.13(1 \mathrm{H}, \mathrm{s}), 9.33(1 \mathrm{H}, \mathrm{s}), 7.40(1 \mathrm{H}, \mathrm{d}$, $J=2 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{t}, J=3 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{t}, J=3 \mathrm{~Hz}), 4.23(4 \mathrm{H}$, $\mathrm{q}, J=8 \mathrm{~Hz}), 4.00(3 \mathrm{H}, \mathrm{s}), 3.97(3 \mathrm{H}, \mathrm{s}), 1.27(6 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}: \mathrm{C}, 57.52 ; \mathrm{H}, 5.34 ; \mathrm{N}, 7.07$. Found: $\mathrm{C}, 57.44$; H, 5.56; N, 7.20 .

Methyl 1,2,3,6-Tetrahydro-4-((diethoxyphosphinyl)oxy)-5-methoxy-benzo[1,2-b:4,3-b]dipyrrole-7-carboxylate (52). To a solution of the phosphate ester $51(109 \mathrm{mg}, 0.275 \mathrm{mM})$ in $\mathrm{HSiEt}_{3}(2 \mathrm{~mL}) / \mathrm{CH}_{2} \mathrm{Cl}_{2}(4$ mL) at $-20^{\circ} \mathrm{C}$ was added trifluoroacetic acid (2 mL) over 15 min . The mixture was warmed to $20^{\circ} \mathrm{C}$ and after 17 h was evaporated under reduced pressure to give a green oil. Chromatography over silica gel eluting with EtOAc gave 52: $48 \mathrm{mg}, 44 \%$; mp $93-96^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$ / hexane); IR (CHCl_{3}) 3460, 3320, 1706, 1280, 1260, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.29(1 \mathrm{H}, \mathrm{br} s), 6.98(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz})$, $4.68(1 \mathrm{H}, \mathrm{br} s), 4.26(4 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.87(3 \mathrm{H}, \mathrm{s})$, $3.68(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 3.17(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.30(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$; MS, m / e calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P} \mathrm{M}{ }^{+} 398.1243$, found 398.1251. It is best to use the crude 52 in the next step. In this way the overall yields through to $\mathbf{5 3}$ and $\mathbf{5 4}$ are substantially improved.

Carrying out the above reduction on 51 ($353 \mathrm{mg}, 0.891 \mathrm{mM}$), followed by direct acetylation with $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$, gave 53: $317 \mathrm{mg}, 81 \%$; mp $144-145{ }^{\circ} \mathrm{C}$ (from acetone/hexane); IR $\left(\mathrm{CHCl}_{3}\right) 3450,1708,1642$, $1532,1420,1370,1264,1136,1016 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.34(1 \mathrm{H}, \mathrm{br}), 7.04(\mathrm{l} \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 4.24(6 \mathrm{H}, \mathrm{m}), 4.08(3 \mathrm{H}, \mathrm{s})$, $3.95(3 \mathrm{H}, \mathrm{s}), 3.12(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.16(3 \mathrm{H}, \mathrm{s}), 1.37(6 \mathrm{H}, \mathrm{t}, J=$ 7 Hz); MS, m / e calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P} \mathrm{M}^{+} 440.1348$, found 440.1344 .

Treatment of the amine $52(13 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ with $\mathrm{NaO}-$ $\mathrm{CN}(61 \mathrm{mg})$ and $\mathrm{AcOH}(1 \mathrm{~mL}) /$ water (two drops) for 2.25 h followed by workup with water (1 mL)/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and extraction of the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$ gave crude 54 . Chromatography over silica gel eluting with $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$ gave 54: $11 \mathrm{mg}, 76 \%$; $\mathrm{mp} 163-165^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3510,3450,1707,1651$, $1586,1426,1284,1250,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.25$ ($1 \mathrm{H}, \mathrm{br} s$), $7.05(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 5.39(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{t}, J$ $=7 \mathrm{~Hz}), 4.27(4 \mathrm{H}, \mathrm{m}), 4.07(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 3.12(2 \mathrm{H}, \mathrm{t}, J=$ $7 \mathrm{~Hz}), 1.36(6 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}) ; \mathrm{MS}, m / e$ calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P} \mathrm{MH}^{+}$ 442 , found 442 , base peak 399.

Methyl $1,2,3,6$-Tetrahydro-4-hydroxy-5-methoxybenzo $[1,2-b: 4,3-b]$ -dipyrrole-7-carboxylate (55). The phosphate $53(317 \mathrm{mg}, 0.72 \mathrm{mM})$, $\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}(864 \mathrm{mg})$, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(274 \mathrm{mg})$ in INKOH $/ \mathrm{MeOH}$ (12 mL , degassed) were stirred at $20^{\circ} \mathrm{C}$ for 3 h . The mixture was quenched with 2 M HCl to $\mathrm{pH} 6(\mathrm{ca} .5 \mathrm{~mL})$, water (1 mL) was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 8 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was evaporated in vacuo to give a brown solid (322 mg). Further extraction of the aqueous phase with EtOAc ($2 \times 5 \mathrm{~mL}$) gave 55 mg of crude product. Chromatography of the total crude solids over silica gel, eluting with $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ successively to $100 \% \mathrm{MeOH}$, gave 55: $103 \mathrm{mg}, 49 \%, 72 \%$ based upon recovered $53 ; \mathrm{mp} 244-246^{\circ} \mathrm{C}$
(from acetone); IR (Nujol) 3320, 2600, 1686, 1640, $1578,1535,1296$, $1260 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 12.26(1 \mathrm{H}, \mathrm{s}), 11.68(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}), 7.04(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 3.83(3 \mathrm{H}$, s), $3.80(3 \mathrm{H}, \mathrm{s}), 3.21(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 2.29(3 \mathrm{H}, \mathrm{s})$; MS, m / e calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{M}^{+} 304.1059$, found 304.1056 .

An exactly comparable procedure carried out on 54 ($208 \mathrm{mg}, 0.472$ mM) gave 56: $93 \mathrm{mg}, 68 \%$; $\mathrm{mp} 221-222^{\circ} \mathrm{C}$ (dec) (from acetone); IR (Nujol) $3300,1694,1632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 12.93$ $(1 \mathrm{H}, \mathrm{s}), 11.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{b}), 4.00$ ($2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}$), $3.82(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.20(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz})$; MS, m / e calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{M}^{+} 305.1011$, found 305.1008.

PDE I (2) and PDE II (3). A solution of $56(14.3 \mathrm{mg}, 46.9 \mu \mathrm{M})$ in 0.01 N KOH (21 mL degassed) was allowed to stand at $20^{\circ} \mathrm{C}$ for 31.5 h. The solution was acidified with $2 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ and brine $(7 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(10 \times 5 \mathrm{~mL})$. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ extract was evaporated in vacuo to give a tan solid, which was crystallized from MeOH to give 2: $3 \mathrm{mg} ; \mathrm{mp} 230-233^{\circ} \mathrm{C}$; IR (Nujol) 3450, 3340, 3200, $1662,1634,1335,1298,1261,1088 \mathrm{~cm}^{-1}$, UV (in water) $251,308 \mathrm{~nm}$ ($\epsilon 40000,15000$), (in 0.01 N NaOH$) 236,254$ (shoulder), $338 \mathrm{~nm}(\epsilon$ $35000,24000)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.83(1 \mathrm{H}, \mathrm{s}), 11.26$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.87(3 \mathrm{H}, \mathrm{b}), 3.99(2 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.19$ ($2 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}$).

To a stirred suspension of the ester $55(13.1 \mathrm{mg}, 45.2 \mu \mathrm{M})$ in EtOH (0.5 mL degassed) containing $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(25 \mathrm{mg}$) was added INKOH (0.5 mL degassed). After 11.5 h at $20^{\circ} \mathrm{C}, 2 \mathrm{~N} \mathrm{HCL}(1 \mathrm{~mL}) /$ brine (1 mL) and EtOAc (2 mL) were added. The aqueous phase was extracted with

EtOAc ($4 \times 2 \mathrm{~mL}$), washed with brine (2 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give crude $3(8.0 \mathrm{mg})$. Purification by chromatography over Celite eluting with EtOAc , then CHCl_{3}, and finally MeOH gave 3 : 2 mg ; mp slow dec at ca. $180^{\circ} \mathrm{C}$; IR (Nujol) 3280, 2500-3700, 1663, $1640,1600,1565 \mathrm{~cm}^{-1}$; UV (in water) $265,324 \mathrm{~nm}(\epsilon 55000,40000)$, (in 0.01 N NaOH) 262, $333 \mathrm{~nm}(\epsilon 21000,7000)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.19(1 \mathrm{H}, \mathrm{s}), 11.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{brs}), 4.20(2 \mathrm{H}$, $\mathrm{t}, J=8.1 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.19(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 2.28(3 \mathrm{H}, \mathrm{s})$.

Acknowledgment. The National Institutes of Health (GM 32718) are thanked for their support of this research. The National Science Foundation is acknowledged for their contribution toward the purchase of a $360-\mathrm{MHz}$ NMR spectrometer (CHE 81-05004). Drs. Aristoff, Kelly, Martin, Warpehoski, and Wierenga (The Upjohn Company) are gratefully thanked for the many discussions and exchanges of information. Professor H. Umezawa is thanked for copies of the relevant spectra of PDE I, PDE II, and their mono- and dimethyl derivatives. Dr. J. C. Huffman, Molecular Structure Center, Indiana University, Bloomington, IN 47405, is gratefully thanked for the X-ray structure determinations.
Supplementary Material Available: Experimental and characterization details for 11, 12, 13, 38, and 39 (2 pages). Ordering information is given on any current masthead page.

Diels-Alder Reactions of Heterocyclic Azadienes: Total Synthesis of PDE I, PDE II, and PDE I Dimer Methyl Ester

Dale L. Boger*1a and Robert S. Coleman ${ }^{\text {ib }}$
Contribution from the Department of Chemistry, Purdue University, West Lafayette, Indiana 47907. Received October 10, 1986

Abstract

Full details of the total synthesis of PDE I (2) and PDE II (3), two $3^{\prime}, 5^{\prime}$-cAMP phosphodiesterase inhibitors possessing the identical, functionalized 1,2-dihydro- 3 H -pyrrolo $[3,2-e]$ indole structure constituting the central and right-hand segments of the potent antitumor antibiotic CC-1065 (1), are described. The linkage of two 1,2 -dihydro- 3 H -pyrrolo[$3,2-e$]indole units in the preparation of PDE-I dimer methyl ester (4) is detailed and constitutes the preparation of the fully assembled central and right-hand segments of CC-1065.

CC-1065 (1, NSC-298223), an antitumor antibiotic isolated from Streptomyces zelensis, ${ }^{2}$ initially identified by spectroscopic methods ${ }^{3 \mathrm{a}}$ and confirmed by single-crystal X -ray structural analysis, ${ }^{36}$ has been shown to possess exceptional, potent in vitro cytotoxic activity, ${ }^{4}$ antimicrobial activity, ${ }^{2}$ and confirmed, potent in vivo antitumor activity. ${ }^{2}$ Recent studies have shown that CC-1065 binds to double-stranded B-DNA in an initial, high-
(1) (a) National Institutes of Health research career development award recipient, 1983-1988 (CA 00898/01134). Alfred P. Sloan research fellowship recipient, 1985-1989. (b) National Institutes of Health predoctoral trainee, 1984-1985 (GM 07775). David Ross Fellow, Purdue University, 1986-1987.
(2) Hanka, L. J.; Dietz, A.; Gerpheide, S. A.; Kuentzel, S. L.; Martin, D. G. J. Antibiot. 1978, 31, 1211 . Martin, D. G.; Biles, C.; Gerpheide, S. A.; Hanka, L. J.; Krueger, W. C.; McGovren, J. P.; Mizsak, S. A.; Neil, G. L.; Stewart, J. C.; Visser, J. J. Antibiot. 1981, 34, 1119. The antibiotic rachelmycin, isolated from Streptomyces strain C-329, has been shown to be identical with CC-1065: Nettleton, D. E.; Bush, J. A.; Bradner, W. T. U.S. Patent 4301 248; Chem. Abstr. 1982, 96, 33362e. Review of the chemistry, biosynthesis, synthesis, pharmacology, and toxicology of CC-1065: Reynolds, V. L.; McGovren, J. P.; Hurley, L. H. J. Antibiot. 1986, 31, 319. Review of the covalent binding of CC-1065 in B-DNA minor groove: Hurley, L. H.; Needham-VanDevanter, D. R. Acc. Chem. Res. 1986, 19, 230.
(3) (a) Martin, D. G.; Chidester, C. G.; Duchamp, D. J.; Mizsak, S. A. J. Antibiot. 1980, 33, 902. (b) Chidester, C. G.; Krueger, W. C.; Mizsak, S. A.; Duchamp, D. J.; Martin, D. G. J. Am. Chem. Soc. 1981, 103, 7629.
(4) Bhuyan, B. K.; Newell, K. A.; Crampton, S. L.; vonHoff, D. D. Cancer Res. 1982, 42, 3532.
affinity, five base pair sequence-specific (A/GNTTA or AAAAA), nonintercalative fashion along the minor groove ${ }^{5}$ and subsequently forms an irreversible, covalent adduct. ${ }^{6}$ The covalent alkylation of DNA has been shown to proceed by N-3 adenine alkylation of the 4,4 -spirocyclopropylcyclohexa-2,5-dienone (spirobicyclo-[5.2.0]octa-2,5-dien-4-one) unit present in the left-hand segment of CC-1065. ${ }^{6}$ Consequently, the mechanism of CC-1065 cytotoxicity has been proposed to be derived from the overstabilization of the DNA helix and the inhibition of the normal unwinding and melting process necessary for DNA synthesis. ${ }^{5}$ The binding specificity and cytotoxic potency associated with this agent may be attributed to two complementary structural features: the repeating, identical 1,2 -dihydro- $3 H$-pyrrolo[3,2-e]indole units constituting the central and right-hand segments of CC-1065 appear to be responsible for the high-affinity, sequence-specific

[^9]
[^0]: (1) Magnus, P.; Gallagher, T.; Schultz, J.; Or, Y.-S.; Ananthanarayan, T. P. J. Am. Chem. Soc., preceding paper in this issue.
 (2) Enomoto, Y.; Furutani, Y.; Naganawa, H.; Hamada, M.; Takenchi, T.; Umezawa, H. Agric. Biol. Chem. 1978, 42, 1331.

[^1]: (3) Komoto, N.; Enomoto, Y.; Miyagaki, M.; Tanaka, Y.; Nitani, K.; Umezawa, H. Agric. Biol. Chem. 1979, 43, 555. Komoto, N.; Enomoto, Y.; Tanaka, Y.; Nitani, K.; Umezawa, H. Ibid. 1979, 43, 559. 'Bolton, R. E.; Moody, C. J.; Rees, C. W.; Tojo, G. J. Chem. Soc., Chem. Commun. 1985, 1775. Rawal, V. H.; Cava, M. P. J. Am. Chem. Soc. 1986, 108, 2110. For references to approaches to the B/C portion, see: Rawal, V. H.; Cava, M. P. J. Chem. Soc., Chem. Commun. 1984, 1526. Boger, D. L.; Coleman, R. S. J. Org. Chem. 1984, 49, 2240. Sundberg, R. J.; Pearce, B. C. Ibid. 1985, 50,425 . For preliminary studies toward the synthesis of the B / C portion from these laboratories, see: Magnus, P.: Halazy, S. Tetrahedron Lett. 1985, 2985. Carter, P.; Fitzjohn, S.; Magnus, P. J. Chem. Soc., Chem. Commun. 1986, 1162.

[^2]: (4) Hurley, L. H.; Rokem, J. S. J. Antibiot. 1983, 36, 383. Hurley, L. H.; Reynolds, V. L.; Swenson, D. H.; Petzold, G. L.; Scahill, T. A. Science (Washington, DC) 1984, 226, 843. Needham-Vandevanter, D. R.; Hurley, L. H.; Reynolds, V. L.; Theriault, N. Y.; Krueger, W. C.; Wierenga, W. Nucleic Acids Res. 1984, 12, 6159.
 (5) Hantke, K.; Schöllkopf, U.; Hansberg, H.-M. Liebigs Ann. Chem. 1975, 1531. van Leusen, A. M.; Possel, O. Heterocycles 1977, 7, 77.
 (6) Tanaskov, M. M.; Stadnichuk, M. D.; Kekisheva, L. V. Zh. Obshch. Khim. 1980, 50, 1738.

[^3]: (7) Schöllkopf, U.; Hoppe, D.; Jentsch, R. Chem. Ber. 1975, 108, 1580. Schölkopf, U.; Hantke, K, Liebigs Ann. Chem. 1973, 1571.
 (8) Halazy, S.; Magnus, P. Tetrahedron Lett. 1984, 1421.
 (9) Ajello, T.; Sprio, V.; Madonis, P. Gazz. Chim. Ital. 1957, 87, 11. Sprio, V.; Madonia, P. Ibid. 1957, 87, 171. Ingraffia, F. Ibid. 1934, 64, 784. Meinwald, J.: Ottenheym, H. C. J. Tetrahedron 1971, 3307. De Kimpe, N.; Verhē, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1978, 43, 2933. Oikawa, Y.; Yonemitsu, O. Ibid. 1976, 41, 1118. Moore, T. L. Ibid. 1967, 32, 2786. Oikawa, Y.; Yonemitsu, O. Tetrahedron 1974, 2653. Becker, H.-D.; Mikol, G. J.; Russell, G. A. J. Am. Chem. Soc. 1963, 85, 3410. Russell, G. A.; Mikol, G. J. Ibid. 1966, 88, 5498. Russell, G. A.; Ochrymowycz, L. A. J. Org. Chem. 1969, 34, 3618.

[^4]: (10) Treibe, A.; Kreuzer, F. H. Liebigs Ann. Chem. 1969, 105. Archibald, J. L.; Freed, M. E. J. Heterocycl. Chem. 1967, 335.
 (11) Ramirez, F.; Desai, N. B. J. Am. Chem. Soc. 1960, 82, 2652; 1963, 85, 3252.

[^5]: (12) The structure of $\mathbf{2 5}$ has been determined crystallographically. Details are available on microfiche, from the Indiana University Chemistry Library-request Structure Report No. 83128.
 (13) Musich, J. A.; Rapoport, H. J. Org. Chem. 1977, 42, 139. Millar, J. M.; So, K. H.; Clark, J. H. Can. J. Chem. 1979, 57, 1887. Meerwein, H.; Hinz, G.; Hofmann, P.; Kronig, E.; Pfecl, E. J. Prakt. Chem. 1937, 147, 257 Neeman, M.; Caserio, M. C.; Roberts, J. D.; Johnson, W. S. Tetrahedron 1959, 36. Lovie, J. C.; Thomson, R. H. J. Chem. Soc. 1959, 4139.
 (14) Gorenstein, D.; Westheimer, F. H. J. Am. Chem. Soc. 1970, 92, 634. Voneken, W. G.; Buck, H. M. Recl. Trav. Chim. Pays-Bas 1974, 93, 210.
 (15) Schwyzer, R.; Costopanagiotis, A.; Sieber, P. Helv. Chim. Acta. 1963, 46, 870.
 (16) Guillerm, G.; Frappier, F.; Tabet, J. C.; Marquet, A. J. Org. Chem. 1977, 42, 3776.
 (17) Magnus, P.; Halazy, S. Tetrahedron Lett. 1985, 2985.
 (18) Oxalyl chloride cleaved the tert-butyl ester group to give an acid chloride, which did not subsequently provide an o-quinone.

[^6]: (19) Attempts to hydrolyze 49 where the methyl and benzyl esters are transposed did not lead to any useful selectivity; consequently, we used the sequence shown.
 (20) Harbuck, J. W.; Rapoport, H. J. Org. Chem. 1972, 37, 3618. Sonnet, P. E. J. Med. Chem. 1972, 15, 97.
 (21) Rieche, A.: Gross, H. Chem. Ber. 1959, 92, 83.
 (22) The structure of 48 (with the methyl and benzyl esters transposed) has been determined crystallographically. Details are available on microfiche, from the Indiana University Chemistry Library-request Structure Report No. 84048.

[^7]: (23) Ramirez, F.; Tasaka, K.; Desai, N. B.; Smith, C. P. J. Am. Chem. Soc. 1968, 90, 751. Ramirez, F.; Tasaka, K.; Hershberg, R. Phosphorus Relat. Group V Elem. 1972, 2, 41.
 (24) The coupling of the A portion to the B/C portion has been carried out by Dr. Kelly (The Upjohn Company).

[^8]: (25) For the synthesis of $\mathbf{5 7}$, see: Warpehoski, M. A. Tetrahedron Lett. in press. Warpehoski, M. A;; Kelly, R. C.; McGovren, J. P.; Wierenga, W. Proc. Am. Assoc. Cancer Res. 1985, 26, 870. For syntheses of model B and C portions, related to analogues of CC-1065, see: Warpehoski, M. A.; Bradford, V. S. Tetrahedron Lett. 1986, 2735.

[^9]: (5) Swenson, D. H.; Li, L. H.; Hurley, L. H.; Rokem, J. S.; Petzold, G. L.; Dayton, B. D.; Wallace, T. L.; Lin, A. H.; Krueger, W. C., Cancer Res. 1982, 42, 2821. Li, L. H.; Swenson, D. H.; Schpok, S. L. F.; Kuentzel, S. L.; Dayton, B. D.; Krueger, W. C. Cancer Res. 1982, 42, 999. Reynolds, V. L.; Molineux, I. J.; Kaplan, D. J.; Swenson, D. H.; Hurley, L. H. Biochemistry 1985, 24, 6228.
 (6) Hurley, L. H.; Reynolds, V. L.; Swenson, D. H.; Petzold, G. L.; Scahill, T. A. Science (Washington, DC) 1984, 226, 843. Needham-VanDevanter, D. R.; Hurley, L. H.; Reynolds, V. L.; Theriault, N. Y.; Krueger, W. C.; Wierenga, W. Nucleic Acids Res. 1984, 12, 6159

